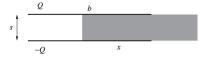
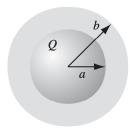
Exercise sheet #7

Problem 1. A very long cylinder, of radius a, carries a uniform polarization \mathbf{P} perpendicular to its axis. Find the electric field inside the cylinder. Show that the field outside the cylinder can be expressed in the form

$$\mathbf{E}(\mathbf{r}) = \frac{a^2}{2\epsilon_0 s^2} [2(\mathbf{P} \cdot \hat{\mathbf{s}})\hat{\mathbf{s}} - \mathbf{P}]$$


[Careful: I said "uniform," not "radial"!]

Problem 2. A short cylinder, of radius a and length L, carries a "frozen-in" uniform polarization \mathbf{P} , parallel to its axis. Find the bound charge, and sketch the electric field (i) for $L \gg a$, (ii) for $L \ll a$, and (iii) for $L \approx a$. [This is known as a bar electret; it is the electrical analog to a bar magnet. In practice, only very special materials-barium titanate is the most "familiar" example-will hold a permanent electric polarization. That's why you can't buy electrets at the toy store.]


Problem 3. For the bar electret of the last problem, make three careful sketches: one of \mathbf{P} , one of \mathbf{E} , and one of \mathbf{D} . Assume L is about 2a. [Hint: \mathbf{E} lines terminate on charges; \mathbf{D} lines terminate on free charges.]

Problem 4. A rectangular capacitor with side lengths a and b has separation s, with s much smaller than a and b. It is partially filled with a dielectric with dielectric constant κ . The overlap distance is x; see the figure below. The capacitor is isolated and has constant charge Q.

- (a) What is the energy stored in the system? (Treat the capacitor like two capacitors in parallel.)
- (b) What is the force on the dielectric? Does this force pull the dielectric into the capacitor or push it out?

Problem 5. A metal sphere of radius a carries a charge Q (See figure below). It is surrounded, out to radius b, by linear dielectric material of permittivity ϵ . Find the potential at the center (relative to infinity).

